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We have calculated the overlap mtegral between periodic parts of Bloch functions for two

arbitrarily directed crystal momenta k; and kz

Contrary to conjectures in the 11terature that

there is a dependence on the direction of k1 in addition to the angle between k1 and k2, our re-

sults show only an angular dependence on (k;* kz)/ (kyky) .

The final expression obtained is iden-

tical in form with results previously deduced by aligning k1 with a principal axis of the crystal.,

I. INTRODUCTION

In the recent past, a number of authors!—3 have
theoretically studied the effects of nonparabolicity
of the energy bands on transport properties in
III-V compounds. Of principal importance to such
considerations is a prescription for the angular
dependence and variation with energy of the prob-
ability of transition between states of crystal mo-
mentum El and K,, in addition to details of band
shapes, Ehrenreich® has derived an expression
for the transition probability for any given scat-
tering process, His result consists of a scalar
function, describing the situation for plane waves
or S states, multiplied by an overlap integral §
between periodic parts of Bloch functions at k,
and kK,. He evaluated § for the special case in
which the initial direction of k1 is parallel to a
principal axis of the crystal. In doing so, how-
ever, he states that the validity of this result for
all other initial directions is an assumption, and
that, in general, G depends on the direction of k1
as well as the angle between k1 and k,. For polar
optical modes in GaAs, the effects of the admix-
ture of p-type valence-band functions with con-
duction-band functions on § appear to be less im-
portant for transport coefficients than its effects
on band structure. In this case §~1 is a reason-
able approximation, and only the modifications in
the energy-momentum relation are of major con-
cern.'”? However, for InSb and InAs, where at
large values of k; there is substantial p-function
admixture,* § differs significantly from 1. In
calculations of hot-electron effects, Matz® used
Ehrenreich’s expression for §, with the conjecture
that any anisotropy in the scattering matrix ele-
ment introduced by picking a preferred direction
for kl is small, It is the purpose of this paper to
show explicitly that Ehrenreich’ s result is valid
for arbitrary choices of the directions of El and Ez.

In Sec, II a reformulation of the problem in
terms of angular momentum states is developed
for mathematical convenience. SectionIII contains
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details of the calculation of § by means of matrix
elements of Euler rotation operators in this rep-
resentation of states,

II. FORMULATION OF THE PROBLEM

According to Ehrenreich, the multiplicative fac-
tor in the transition probability is defined by

§@, K)=3 X | [ dfule, @@, Q)

This measures the overlap between periodic parts
u,i,(F) of Bloch functions summed over the dou-
bly degenerate spin states p, and averaged over
initial spin states u;. The functions u,; are giv-
en by Kane, ® and may be interpreted as follows.
With respect to the crystallographic axes let us
write the two linear combinations of wave functions
having the symmetry properties of atomic s and p
orbitals under the operations of the tetrahedral
group:

|, K)=a,[iS 4]+ b[(X=i¥)4]/v2+c 2 4], (2)

[B,K)=aiS4]+b [~ (X+i¥)¥]/V2 +c[Z 4].(3)

The coefficients a,, b,, and c, are real numbers,
and the arrows refer to up and down spin states.
Further, let (¢, 0) be the azimuthal and polar
angles of k with respect to the axes of the crystal.
Then, u, , is generated from |u, k) by

u, 3= U(@,0)| 1,K), (4)

where U is defined in terms of the angular mo-
mentum components J, and J, by

U(o, 8)=exp| — ipJ,Jexp| - i6J,] . (5)

In Eq. (4) the index u may assume values a or B,
If the definitions (2) and (3) are now inserted in
Eq. (1), we may rewrite

§=3 X2 I(uI:EIIRI'“LZ’kz)IZ: (6)
I-llyll-z’-‘ay
where the operator of rotation is
R=U"Yg,, 6,)U(¢s,6,). (7)
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A significant interpretation of the states (2) and
(3) is further obtained by adopting an angular mo-
mentum representation of states lj,,j,; J, M).
These are,_’by definition, simultaneous s eigenfunc-
tions of i, ]z,J and J,, where I= ]1+;|2. In
terms of these product states it is straightforward
to verify that®

[st1=10, %% 9,
[s¥l=]0, % % - B,
[z4]=-(3)1'2|1, 5; 3, 3)

+ (313, 53, B
[24]=31721, 54 - D+ (D21, 55, -0, @
[- x+iv)/V2e]=3)' 21, 5 5, D +37121, 55, ),
[(x-iv)/V24l=- (32|14 3,- %

+371 2|1, 53, - ).
In this representation the states of interest then
become
la, R)=ia,|0, 5 5, - H+A[1, 44 - B
+BI1, 25 -9,

'B’k)=iak]0, 25 5, §>‘AI 1, éy ;, é)*‘BI 1; 23 2, 2>
(9)
where the coefficients are defined by

A=(c,—V2b,)/V3 and B=(v2c, +b,)/V3. (10)

In this form it is evident that |a, k) and 18,k) are
eigenfunctions of J,. This accounts in part for’the
significant simplification of the problem when k;
is presumed parallel to the Z axis of the crystal.
For, in that instance, R represents a single Euler
rotation whose J, dependence merely introduces
complex phases in ¢. The angle ¢ immediately
drops out of the calculation. A further simplifi-
cation results from the fact that the four matrix
elements whose norms define § occur, apart from
phase factors, as conjugate pairs, i.e.,

(69 E2|Rlﬁ,i;1)= (a’EZ‘RI Q:El)*’
(B,Elel 0‘:1:1)=— (a,ﬁle |B,R1)*

Finally, it becomes possible to take advantage of
certain special properties of the matrix elements
of R between angular momentum states. These
follow from the well-known analogs for the unitary
operator exp[ —iJ,].7 Since the latter (and in
consequence R) connects only states with the same

(11)

J

Re{Rx/z,llle/zl/ziRuz -1/2R1/z,-1/a} ZJ Z,, cos{ (my - my) (@, - ‘Pz)]7m1,112(92)
my==dy M=z

x{7a 120000772,1/2(61)

values of j;, js, and J, it is sufficient to consider
matrix elements of the form

v o=, m|exp| - i6J,]|J, m').

These possess the following properties:

77 is real, (12a)
V'r{tm' = (_' l)m-m' T{m,-m' ’ (12b)
/rim'(e):”i'm(—o)’ (120)

which implies that
[70)]nme = 7mem(®) .

From these properties and the definition

R#m' = E eiml(wl-wz)

(017 03),
1—-J

it may be readily deduced that

Rle=(=1)"™RIX . (13)
and that R’ is complex only by virtue of its ¢ de-
pendence.

The relations (11) and (13) can be used to re-
duce S to the more transparent expression

§= % {ldd,+ A3 A3)| RI/3, ul*+ BB,
m=x1 /2
X[B\By| R} m |+ 2%1“;:2 Re(R} /3, nRi /2.0)]
+24,A,(~ 1)1 /?‘[aklak2 |RLZ |2
+ BBy Re(R{ 73, wR1 735} (14)
In Sec, III we will demonstrate explicitly that G is

a function of cosy= (k1 K,)/kyk5) via the expression

cosy = cosf; cosf, + sind, sind, cos(@, — ¢,).

[II. CALCULATION OF $

The first term of Eq. (14) can be immediately
evaluated by using the unitarity of R and the com-
pleteness of the states to write

Z |RiAaI%=1. (15)
m=%1/2
To calculate the remaining terms it is convenient
to perform a further reduction of terms by fac-
torization. Accordingly, consider the general ex-
pression

21 /2(05)

7’::{.-1 /2(91)7i§,-1 12(91)}‘- (16)
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By coupling in turn terms in which m2; and m, are of like and unlike sign, and using properties (12b) and

(12¢), we deduce the factorized form

my ym2>0

2

J J J J
XTIt 1 72 V02,1 2 F Vb o1 72V 0 /a)e_f .
1

i=1

This formula highlights the expected symmetry of
§ in its angular variables. It is further seen by
inspection that terms with the minus sign in the
second sum vanish for the case J,=J, and m, = mj.

In order to complete the evaluation of Eq. (14)
via Eq. (17), we need the following explicit forms
for the matrix elements®:

732 1 ja=— V3 coszfsing

73)5, .1/2=% V3 sinz0sinb ,

73751 /2= = 5cos38(1 - 3cosh), (18)
738, .1/2=— $sin36(1+ 3 cosh),

708 1= cos30, 7i1/E 4 ,=—sinif.

By a straightforward substitution we may obtain
explicitly that

|R1/3,1/21% = |RL/Z, 4 o] 2= cosy, (19)
| B o+ | BB, 2] *= 21+ 3cos™), (20)
Re{R} /%1 2RI 30 2+ Ry 5,1 2 RYG R, 2} =cosy, (21)
and
Re{R} 52,1 /2 R} ;gﬁ 2= R} ;g,-l 2 Ri ;gikq s}

= $(3cos?y - 1), (22)

With these results § is finally expressible in the
form

2 7
% eos(my = m;)(e, - %))41-11 (731 127201 122 Vo112 mgy-172)0, +COSL (g + 1m5) (91 = 23)]

(17
[
S= ailaii +2ay,a,,(A1A, + B, B;) cosy
+(4,A,+ BB, cos®y + (A,A, - 3B, B,)?
x (1 - cos?y), (23)

where in terms of the original coefficients

AIAZ + BIBZ = bklbkz + cklcka )
and
AyA; = 3B1By = 3by by, - 27 "2 (byyCa, + bayCy) . (24)

This corresponds to Matz’s expression,® and ex-
hibits the explicit dependence of G on the cosine of
the angle between El and Ez.

A qualitative physical picture of this result may
be constructed as follows, The function § is a
linear combination of terms, each of which mea-
sures the overlap between states of definite J,.
When k, is aligned with the crystallographic Z
axis, each term is invariant under rotations about
the Z axis, and § is thus cylindrically symmetric
about 1:1. Still further, the states of interest are
direct products of spin states with s and p orbit-
als. Although the crystal has tetrahedral sym-
metry, these particular states have the same
transformation properties under rotation as they
would for a spherically symmetric system. It is
therefore reasonable to expect that § will remain
invariant in form when the direction of k, is arbi-
trary.
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